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ABSTRACT

-- This report evaluates the feasibility of using a new class of chaotic waveforms in

low-frequency active acoustic scenarios. These waveforms are generated by nonlinear

processes and therefore have characteristics that differ from their linear counterparts.

There are two principal findings of this evaluation. First, as broadband signals, chaotic

waveforms have desirable characteristics such as range resolution, range-rate resolution

(Doppler), and reverberation discrimination against moving targets. Second, unlike

pseudo-random noise, chaotic waveforms are amenable to noise reduction techniques

that enhance the Signal-to-Noise Ratio (SNR) because they are of low dimensionality.

Additionally, because chaotic signals are difficult to recognize, they decrease the potential

for recognition by opposition forces.

I Using a selection of qualitative and quantitative metrics, the Lorenz waveform is

identified as suitable for use in active surveillance scenarios. Further, it is demonstrated

I that, given present acoustic projector technology constraints, waveform generation can be

accomplished using straightforward band-shifting techniques.
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1. INTRODUCTION

Requirements for advanced acoustic sensors will be driven largely by the proliferation

of weapons systems to those third-world cuuntries having maritime interests. Particularly

important will be the need to monitor the conventional submarine activities of such

countries. When operating on battery power, these submarines are extremely difficult to

detect and classify, especially in noisy coastal regions where the sea floor is often littered

with debris and the water column is densely populated by biologics.

The utility of traditional passive acoustic sensors has been diminished since such

sensors have relied upon the noise radiated by the submarine's own propulsion system, or

other mechanical sources mostly of a transient nature. Active sonars, by nature, are

susceptible to counterdetection and thus neutralization by countermeasures. This situation

has necessitated the exploration of alternative technologies and tactics that afford greater

detection potential and reduced vulnerability to countermeasures in near-land warfare.I
One viable concept is that of low-frequency, bistatic systems that use a powerful, but

I remote, acoustic projector to ensonify a large volume of ocean. Target echoes are then

detected by separate, passive acoustic receivers. This type of bistatic surveillance system has

I its own set of troublesome problems. Principal among these are the unwanted reverberant

returns from bathymetric features, masking of target echoes by the source pulse, poor

understanding of the bistatic scattering properties of the sea surface and sea floor, difficulties

in target localization, multipath resolution, and noise field estimation.

The purpose oi ýis study is to evaluate the feasibility of using a new class of chaotic
waveforms in low-frequency active acoustic scenarios in realistic ocean environments. These

* waveforms are generated by nonlinear processes and therefore have characteristics in

common with broadband signals: range resolution, range-rate resolution (Doppler), and

* reverberation discrimination against moving targets.
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This report is organized into five sections. After the introduction in Section 1, chaotic

waveforms, properties and metrics are discussed in Section 2. Section 3 examines the effects

of signal distortion on the integrity of chaotic waveforms, and noise reduction techniques are

discussed in Section 4. Section 5 presents the conclusions of the study.

II
I
I
I
I
I
I
I
I
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I 2. CHAOTIC WAVEFORMS, PROPERTIES and METRICS

2.1 Chaotic Waveforms

Four basic chaotic waveforms have been selected for detailed examination: Lorenz,

Duffing, Henon and Iterative. For each of these waveforms, the following information is

presented: equation; time series; phase plot; and power spectrum (Figures 2.1-1 through

2.1-4). The phase plot is a qualitative metric for viewing chaotic behavior in signals; this

metric will be described in more detail in Section 2.4.1. In addition, the ambiguity function

is presented for all four waveforms (Figure 2.1-5). The ambiguity function describes the

total ambiguity in resolving targets in range (time delay) and velocity (Doppler frequency).

Other nonlinear waveforms that were investigated, but not discussed in the body of this

report, are contained in Appendix A.

2.2 Properties of Chaotic Waveforms

Chaos is the appearance of apparently random motion in both forced and unforced

deterministic dynamical systems. A chaotic system appears to exhibit irregular, unpredictable

behavior. While both noise and chaotic signals are characterized by a broadband power

spectrum, chaotic signals can be distinguished from noise on the basis of dimensionality.

Specifically, noise has a high dimensionality while chaotic signals have a low, and often non-

integer (or fractal), dimension. Both qualitative and quantitative techniques are available

for the determination of the dimensionality of nonlinear waveforms. In addition, the

conventional replica correlation technique can be used to detect nonlinear waveforms.

3
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2.3 Conventional Metric

The replica correlation technique is applied to each of the four chaotic waveforms

in order to provide a familiar frame of reference. This technique is based on a conventional

cross correlation of the return signal with a replica of the transmitted signal.

2.4 Qualitative Chaotic Metrics

Qualitative techniques used in this report to describe chaotic behavior include phase

plots and close return maps. Other metrics, including the return map and Poincar6

sections, are also described for completeness even though they are not used in this study.

2.4.1 Phase Plots

Nonlinear systems that can be modeled by a set of differential equations are

amenable to an analysis in phase space. A single point in phase space characterizes the

state of the entire system at an instant in time. A sequence of such points (referred to as

a trajectory) in m-dimensional phase space can be used to characterize the dynamical

evolution of that system. The shape that the trajectory assumes is called an attractor. The

trajectories of a dynamical system can be categorized according to four classes of attractors:

(1) point attractors

(2) limit cycles

(3) quasi-periodic attractors

(4) strange attractors

Strange attractors are characteristic of chaotic behavior.

9
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The first step in any analysis of suspected chaotic behavior is to reconstruct the phase

portrait in order to identify the type of attractor. The reconstruction of phase trajectories

from measured data is limited in two respects. First, the true dimension of the system may

not be known a priori. Second, it is unlikely that all dynamic variables can be observed in

the data even if the dimensionality is known. Reconstructed phase plots for the Lorenz,

Duffing, Henon and Iterative waveforms were presented previously in Figures 2.1-1 through

2.1-4.

2.4.2 Close Return Map

An approach to the detection of chaotic waveforms referred to as a Close Return

Map (CRM) has been shown to be an effective representation for the Lorenz waveform.

The CRM is a plot of the time differences, for each of k consecutive reference points of a

time series, between the time series origin and occasions when the level of the discretized

time series returns to a value within some small window about the reference point. Both

the ordinate and abscissa are in units of time.

2.4.3 Other Qualitative Metrics

Poincare Section. A Poincar6 section is the intersection of the m-dimensional phase

trajectory in the embedding space with a surface of m-1 or fewer dimensions. A useful tool

in the visualization of a chaotic system is th-. intersection of the three-dimensional (3D)

trajectories with a two-dimensional (2D) plane. The result is a 2D projection of the strange

attractor.

Return Map. A return map is derived from the Poincar6 section. If the Poincar6 map is

one-dimensional (ID), then the nth orbit of the trajectory with the intersecting plane can be

described by a single parameter, x[n]. The corresponding return map is then simply a plot

10
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of x[n] versus x[n+1] for a1l n. The shape of the return map provides a qualitative

description of the chaotic process itself.

2.5 Quantitative Techniques

Quantitative techniques (or dimensional metrics) used in this report to describe

chaotic behavior include correlation dimension and local intrinsic dimension. Other metrics,

including information dimension, theoretic entropy and Lyapunov exponent, are also

described for completeness even though they are not used in this study.

2.5.1 Correlation Dimension

This method was developed by Grassberger & Procaccia (1983). First, the measured

time series ti, k = 1,..,N, is embedded in m-dimensional phase space: XN = (tj, tj+,,

tj+2I,...,tj+(m4)I). Then, a distance metric, dij, is selected which provides a measure of the

separation between points XN and XN in phase space. The correlation function is defined as

22r ={No. of ordered pairs X X, such ha dgr), i<jC'(r) = N(N-1) w2drlij

where: m = embedding dimension

N = number of measured vectors

r = distance parameter

C'(r) behaves approximately as rd, where d is the dimension that is being estimated.

In practice, the dimension d can be found by plotting log [C(r)] versus log (r) and then

graphically determining the slope. For small r, poor statistics result in deviations from a

uniform slope; for large r, deviations may be caused by nonlinear effects in the calculations.

Consequently, the choice of a meaningful range of r values is critical to this procedure, and

recourse is often made to visual inspections of graphical outputs. Once the range of r is

selected, the slope can be calculated using a least-squares method.

11
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Several related factors affect the accuracy of the estimation of the correlation

dimension including the embedding dimension (m), the delay time (1) used in reconstructing

the atti-actor, the length of the data set (N), the sampling interval used in forming the time

series, and the signal-to-noise ratio (SNR) of the signal. For example, a slope value close

to that of the embedding dimension may indicate that the embedding dimension selected is

too low for that particular attractor. A log-log plot without a region of uniform slope may

indicate that the time delay was inappropria*'- or that an insufficient amount of data was

used. Noise tends to increase the dimensionality calculated using this maethod.

It should also be noted that the correlation dimension is most effective for attractors

with dimension less than 4.

2.5.2 Local Intrinsic Dimension

The Local Intrinsic Dimension (LID) is another procedure for classifying a chaotic

time series. Computation of the LID requires selection of an embedding dimension,

formation of vectors, and selection of local centers on the attractor. For each lical center,

a data covariance matrix is formed using the nearest neighbors. Singular value

decomposition (SVD) is then applied to the matrix and the eigenvaiues, calculated from the

singular values, are ranked from highest to lowest. All eigenvalues greater than some

specified fraction of the highest eigenvalue are considered to be significant, and the number

of such significant eigenvalues is taken to be the LID for that neighborhood. This process

is repeated at each of the local centers, and the average across all of these is called the LID

of the attractor. In effect, this procedure yields an estimate of the topological dimension of

the data (i.e., the number of orthogonal vectors required to describe the data vectors when

averaged over a number of regions in the phase space).

12
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2.5.3 Other Quantitative Metrics

Information Dimension. The information dimension is similar in concept to the correlation

dimension, but differs in that it uses only nearest neighbors and is more applicable for

chaotic processes of dimension greater than 3. For experimental data, nearest neighbors

must be selected which are far enough apart such that the power law represents scaling of

the attractor rather than the noise. Issues of concern for this approach are: embedding

dimension, length of the data set, processing (or filtering), SNR, and noise reduction.

Theoret;c Entrotw. In addition to the various dimensions, chaotic attractors can also be

characterized by entropies. Such measures have been adapted fr m ergodic theory and

applied to physical measurements.

Lvapunov Exponent. Lyapunov exponents represent the average exponential rates of

divergence or convergence of nearby orbits in the phase space. Nearby pt ,ts in the phase

space represent nearly identical states. A time evolution of two trajectories, each beginning

with one of the two initially nearby points will show whether the system is creating or losing

information. If the trajectories diverge, the system is said to be chaotic. Any system

containing at least one positive Lyapunov exponent is lablled chaotic, with the magnitude

of the positive exponent reflecting how rapidly the dynamical system becomes chaotic. In

the case of a deterministic-chaotic system whose dynamical equations are known, the

Lyapunov exponents can readily be calculated from the system Jacobian. For cases involving

time-series data, the method attributed to Wolf (1986) can be used. This method tracks the

trajectories of two orbits starting on neighboring points in the phase space and then

calculates the average rate of their exponential divergence aw the trajectories evolve.

13
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I 3. SOURCES AND EFFECTS OF SIGNAL DISTORTION

I 3.1 Sources of Signal Distortion

UThe chaotic metrics described in Section 2 are formulated on the assumption of an

undistorted noise-free signal. In the event of distortions caused by transmission through the

ocean and/or Doppler shifts, as well as noise contamination, these metrics might not be

expected to perform as well as under ideal situations. The purpose of this section is to

investigate the effects of the transmission channel, Doppler shifts, and varying signal-to-noise

ratio (SNR) values on the viability of these metrics and upon replica correlation.

3.1.1 Propagation through Ocean Channel

A demanding test of the robustness of chaotic waveforms is passage through a

realistic ocean waveguide. Rather than generate original ocean impulse response functions,

recourse was made to work already accomplished at the Naval Undersea Warfare Center

(NUWC) in New London, CT. (This decision was based on guidance received from the

I project office.) The NUWC data consisted of the frequency response of the ocean based

on execution of the Generic Sonar Model (GSM). Two ocean environments were

I considered covering the frequency band 900-1500 Hz.

I A consequence of the decision to use the NUWC data was to band-limit the chaotic

* waveforms, which are necessarily broadband in nature. Two options were considered:

bandpass filtering the broadband chaotic signals; and frequency-compressing then modulating

the compressed signals so as to fall within the 900-1500 Hz bandpass. The second option

is reversible; that is, the original chaotic waveform can be recovered. The first option,

however, destroys part of the signal and therefore, is not reversible. Consequently, in all the

analyses that follow, the second option was applied.

1
* 14
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I It should be noted that frequency compression was achieved by simply assigning a

temporal sampling rate to the chaotic waveform samples (4096 points) so that the signal

spectra fell in the band 0 - 512 Hz. As shown in Section 2.1, all the chaotic waveforms were

I generated as solutions to differential or difference equations with no implicit temporal

relation, except for Duffing which can be arbitrary. Consequently, the assignment of a

temporal sampling rate can be considered an interpretive convenience.

3.1.1.1 Characteristics of Ocean Channel

The two ocean environments considered were both deep-water regions exhibiting a

sonic layer, a deep sound channel, and sufficient depth excess to support convergence-zone

(CZ) propagation. The corresponding sound speed profiles are presented in Figure 3.1-1.

1 3.1.1.2 Ocean Impulse Response

In order to utilize the NUWC data, the chaotic waveforms first had to be modulated

to be consistent with the 600 Hz bandwidth.I
A total of six cases were obtained from NUWC: three cases each for two different

environments. All cases involved bistatic geometries with a hull-mounted transmit array (at

18 ft), a submerged target (at 600 ft), and a passive towed array (at 322 ft). The horizontal

separation between the submerged target and the two arrays varied from 67 kyds to 71 kyds,
and the two arrays were deployed from the same surface ship (i.e., they were separated by

a relatively short baseline). The combinations of sound speed profiles and ranges used in

these six cases are summarized in Table 3.1-1.

I
I
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Table 3.1-1.
Summary of Test Cases

_____________IRange
Profile Number 67 kyds 69 kgds 71 kyds

i Profile 1 Case 1 Case 2 Case 3

Profile 2 Case 4 Case 5 Case 6

For each case, both outbound and inbound ocean frequency iesponses were provided.

I The frequency responses were reported in ¼,-Hertz intervals over the interval 900.00 Hz to

1499.75 Hz. To the nearest power of 2, this implies a sampling rate of 4096 samples per

i second in the time domain and a time length of 4 seconds, or a total of 16384 samples.

Both the impulse and frequency responses of the outbound and inbound channels of Case 1

are plotted in Figure 3.1-2. A complete set of impulse and frequency responses for all six

cases are presented in Appendix B.

3.1.2 Doppler

Motion of both the transmitter-receiver platform and the target will distort the

received signal. The signal impinging upon the target will be Doppler-shifted due to the

motion of the transmitter and of the target. The resulting echo will then be Doppler-shifted

due to the motion of the target and of the receiver. In the analyses that follow, the

simplifying assumption was made that the transmitter-receiver is stationary. Justification for

this assumption is based on the premise that one can pre- and post-correct own ship's

Doppler in the directions of the transmit and receive beams, respectively. Consequently,

only the target was assumed to be in motion. The transmitted waveform, therefore, was

convolved with the outbound channel, then Doppler-shifted, and then convolved with the

inbound channel. Detection was performed by crosscorrelating Doppler-shifted replicas of

the transmitted waveform with the signals passed through the ocean channels.

17
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Two cases were considered:

(1) correlate demodulated echo with a modulated-Doppler-shifted replica that has

then been demodulated; and

(2) correlate de-dopplerized, demodulated echo with the replica.

3.1.3 Noise Contamination

Noise contamination of chaotic signals was simulated by adding randomly generated,

Gaussian noise to each waveform. The noise was added at levels equivalent to SNRs

ranging from -30 dB to +20 dB.

3.2 Effects of Signal Distortion

I The effects of distortion upon chaotic waveform echoes are examined. With one

exception, it will be shown that, when modulated, the waveform sensitivities to Doppler

I make them amenable to precise Doppler determination and, hence, target tracking.

I Three forms of distortion are examined in the following: that caused by additive

noise; by transmission through the ocean; and by Doppler. In Sections 3.2.1 through 3.2.3,

the 'Case 1 Ocean' is used. The Case I Ocean sound speed profile was presented previously

in Figure 3.1-1 and applies to a transmitter/receiver-to-target range of 67 kyds. In all that

follows, the target is assumed to be a perfect reflector, introducing no distortion or

attenuation to the signal.

The signal recognition and analysis metrics examined in this section include: replica

correlation, phase plots, close return map, correlation dimension and local intrinsic

* dimension.

19
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U 3.2.1 Replica Correlation

!Replica correlation is simply the correlation of the received echo with a replica of the

transmitted signal. The effects upon replica correlation of additive noise and the two ocean

environmental scenarios at the three ranges provided by NUWC are examined for Doppler

shifts caused by 19.5 knots to 20.5 knots target motion. Only the target is assumed to be in

motion, because it is possible to compensate for transmitter-receiver motion.I
3.21.1 Noise ContaminationI

Noise contamination of chaotic signals was simulated by adding randomly generated
Gaussian noise to each waveform. The noise was added at levels equivalent to SNR's

ranging from +20 dB to -30 dB. The noisy signals were then cross-correlated with the pure

signal to deteimine the SNR at which the correlations are visually undetectable. This

procedure provides an indication of the robustness of the various chaotic waveforms to noise

I contamination. The results for the Lorenz waveform are presented in Figures 3.2-1 and
3.2-2. Complete results for the Lorenz, Duffing, Henon, and Iterative waveforms are

I presented in Appendix C. Note the scale change between Figure 3.2-1 (correlation

magnitude 0-1) versus Figure 3.2-2 (correlation magnitude 0-0.2). In Appendix C it can be

seen that the correlations with the Duffing waveform appear similar to what one would

expect for a sine-wave-like signal. This follows from the fact that the Duffing is driven by

a cosine.

1 3.2.1.2 Propagation and Doppler

Figure 3.2-3 illustrates correlation of the Lorenz echo, passed through the Case I

ocean environment (using Profile 1, as illustrated previously in Figure 3.1-1) at a range of

67 kyds, with a replica of the transmitted signal. The correlations shown in Figure 3.2-3

were calculated by cross-correlating the received echo with Doppler-shifted replicas. The

20
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absolute values of the correlations are shown in the figures. It is clear that the modulated

signal is very sensitive to Doppler shifts. Additional figures, contained in Appendix D, show

that this observation applies to all the environment-range combinations provided by NUWC

(recall Table 3.1-1).

Another observation that can be made from Figure 3.2-3 and those in Appendix D

is that, even when the replica is shifted by the correct Doppler, the peak correlation is well

below 1. The reasons for this are that the ocean channel distorts the signal, but perhaps

more importantly, the Doppler-shifted echo is convolved with a slightly different band of the

ocean channel frequency response than would be a non-Doppler-shifted signal. This is

illustrated in Figure 3.2-4 where both the echo and replicas in the top of the figure have no

Doppler shift, while in the bottom of the figure they both have Doppler shifts caused by 20

knots of relative target motion. The correlation of the no-Doppler case is seen to be higher

than for the Doppler-shifted case.

Much of the sensitivity to Doppler is caused by the fact that the signal has been

modulated by a 944 Hz carrier frequency. Figure 3.2-5 illustrates replica correlations when

the modulating carrier frequency is only 50 Hz. The sensitivity is reduced by a factor of

almost ten; however, it should be noted that the signal was not propagated through the

ocean. This follows from the fact that the signal occupies the band 50 Hz to 562 Hz, which

is outside the 900 Hz to 1600 Hz band of the ocean models.

An additional replica correlation approach was examined in which the echo was 'de-

Dopplerized', demodulated, then correlated with a replica of the transmitted signal. The

results of this approach are illustrated in Figure 3.2-6. Upon comparing Figures 3.2-6 with

3.2-3, it is seen that there is no advantage to this approach; operationally it would be much

more computationally intensive.
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I 3.2.2 Qualitative Assessments

1 3.2.21 Phase Plots

N Phase trajectories characterize the dynamical evolution of a chaotic system. It would

* be hoped, therefore, that the echoes of chaotic waveforms would preserve some degree of

the dynamics and hence, that the original waveform would be recognizable from the phase

plot of the echo. It will be seen that our signal distortions of a modulated signal are

generally too great to preserve the phase plots, using an embedding dimension of two.

3 Illustrated in Figure 3.2-7 is a series of phase plots of the Lorenz waveform. The figure

consists of two columns of four panels. The first column examines the distortion of phase

plots due to the transmission channel alone, with no Doppler. The first panel (a) of the left

column is a phase plot of the original waveform. The second panel (b) of the left column

shows the phase plot after modulating then demodulating the signal. Any difference

between the first and second panels is due to computer truncation error. The third panel

3 (c) of the left column is the phase plot of signal at the target after demodulation. This

signal has been transmitted one way through the ocean then demodulated. The fourth panel

(d) on the left is a phase plot of the demodulated echo. This signal has been transmitted

and echoed back to the receiver then demodulated. The second column of panels examines

I the effects of Doppler. The first panel (e) in this column is the phase plot of the baseband

Doppler-shifted signal. The second panel (f) is a phase plot when the signal has been

modulated (944 Hz) then Doppler-shifted. In the third panel (g) the signal has been

modulated, transmitted, Doppler-shifted, then demodulated at the target. The fourth panel

(h) in the second column is the demodulated, Doppler-shifted echo at the source-receiver.

Figure 3.2-7 shows that the Lorenz phase plot is intolerant of distortion, either by ocean

propagation or by Doppler shift. This intolerance is also exhibited by the Duffing, Henon

and Iterative waveforms as can be seen in Appendix E. The figures of Appendix E present

the same information described above, but for all four waveforms. Extreme intolerance to

Doppler shift is seen of the Henon and Iterative waveforms, even when the shift occurs over
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Figure 3.2-7. Phase Plot of the Lorenz Waveform: (a) original; (b) modulated, then
demodulated; (c) at target; (d) of echo; (e) Doppler-shifted; (t) modulated
then Doppler-shifted; (g) at target, Doppler-shifted; (h) Doppler-shifted echo.
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the baseband (0 - 512 Hz). The Duffing waveform phase plot is the most resistant to the

distortions.

Presented in Appendix F are selected stereoscopic projections. These plcts are

presented for those individuals who are adept at visualizing three dimensions from the stereo

pairs (e.g., Broomhead & King, 1986).

3.2.2.2 Close Return Map

The Close Return Map (CRM) is an approach to the detection of chaotic waveforms,

previously discussed in Section 2.4.2, that is a particularly effective metric for the Duffing

and Lorenz waveforms. Briefly, the CRM is a plot of the time difference between a time

series origin, for K consecutive reference points of the time series, and occasions when the

level of the discretized time series returns to a value within some small window about the

reference point. Both the ordinate and abscissa are in units of time. Distinctive patterns

I are observed from such figures, for example, those illustrated in Figure 3.2-8. Figure 3.2-8

illustrates the effects of random Gaussian noise on the CRM of the Lorenz waveform as the

I SNR decreases; Figure 3.2-8(d) is the CRM of Gaussian noise alone. Noise can be seen to

introduce a random scatter to the CRM data points.

Figure 3.2-9 (a) illustrates the effect of Doppler on the CRM. Doppler was

introduced in the manner described previously in Section 3.1.2, corresponding to a target

moving at a relative speed of 20 knots. The Doppler shift is seen to distort the pattern

relative to that shown previously in Figure 3.2-8. However, a clear pattern related to the

original can be seen in Figure 3.2-9(a). Figure 3.2-9(b) illustrates the distortion caused by

propagation through the ocean channel in the band 900 - 1500 Hz. While the distortion

differs from that caused by Doppler, an obvious pattern nonetheless remains. The Case 1

ocean channel described in Section 3.1.1 was used as the propagation channel. Figure

3
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3.2-9(c) illustrates the combined distortion resulting from both propagation through the

ocean and a Doppler shift. Again, a distorted but clearly apparent pattern is observed.

Figure 3.2-10 is the CRM of the Duffing waveform. Again a distinctive pattern is

observed which differs from that of the Lorenz waveform. Figure 3.2-10(b) is the same as

Figure 3.2-10(a) except that noise has now been added at a SNR of 10 dB. Figure 3.2-10(c)

illustrates the effects of propagation (Case 1 ocean) and Doppler (20 knots relative motion)

on the Duffing CRM. Noise added at a SNR of 10 dB starts to obscure the patterns, as car,

be seen in Figure 3.2-10(d).

The utility of the CRM is diminished for the Henon (and Iterative) waveform because

of the tightness of the patterns, as can be seen in Figure 3.2-11(a). If the window width used

to define close returns is reduced so as to produce a plot less dense in dots, the patterns are

lost. Figure 3.2-11(b) is the CRM of the Henon waveform propagated through the Case I

ocean, Doppler-shifted at relative motion of 20 knots, with noise added at a SNR of 10 dB.

In order to see a pattern, the close return window width had to be broadened, resulting in

a dense plot as seen in the figure. The problem is that, if the window width is too broad

(i.e., dots are dense enough to see a pattern in the distorted Henon waveform), noise alone

will also exhibit a pattern as shown in Figure 3.2-11(c). Only at the density of dots used for

the Duffing and Lorenz waveforms does noise become a random distribution of dots. In

other words, the close return window width must be small enough to preclude adjacent

points in a discretized time series.

3.2.3 Quantitative Assessments

3.2.3.1 Correlation Dimension

The correlation dimension is one of the invariant metrics that provides a measure of

the density of embedded points occupying a higher dimensional space. The invariance of
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I this metric under ocean propagation and Doppler distortion is examined. It will be seen that

these distortions increase the correlation dimension, but not at the rate that would be

expected for Gaussian noise.

H Table 3.2-1 summarizes the estimates of the correlation dimension of the four chaotic

waveforms examined in this report. It will be recalled that the correlation dimension is the

slope of the linear equation relating the logarithms of the range and domain of the

correlation function defined in section 2.5.1. In practice estimates of these linear equations

are not always linear, thereby requiring judgement as to the region of linearity. Because of

this subjectivity, plots are provided in Appendix G of the curves used to estimate the

correlation dimensions of Table 3.2-1.

The estimated correlations dimensions of a sine wave, FM slide (chirp), and Gaussian

noise are also given in Table 3.2-1 to provide 'baselines.' Not all matrix cells are completed

in Table 3.2-1 for two reasons. First, this procedure is very computationally intensive.

Second, these results are only intended to indicate trends. For the sine wave the correlation

dimension was found to be 1. A five-dimensional embedding was used as well as a time lag

(r) of one sample. The dimension of the FM slide was estimated to be 2. Both the sine

and FM slide are non-chaotic waveforms with integral-valued dimensions. The estimated

correlation dimension of Gaussian noise can be seen from the table to increase with

increasing embedding dimension, approximately 4.71, 6.25, and 9, for embedding dimensions

5, 7, and 10 respectively. This is to be expected because the dimension of noise is infinite;

hence, the estimate of the correlation dimension should be approximately equal to the

embedding dimension used to make the estimate.

The estimated correlation dimension of the undistorted Lorenz waveform embedded

in four dimensions is approximately 2.02. When the signal is propagated through the ocean

and Doppler-shifted, the dimension is seen to increase to about 3.33 and 3.5 for embedding

dimensions of 5 and 10, respectively. These increases are well below the embedding
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dimensions. When distorted by Doppler alone, the dimension is about 3.9 (estimated from

Figure G-9), suggesting that a larger sample size might be required in order to obtain a
better estimate.

Table 3.2-1.
Correlation Dimension

I __________________IEmbeddin Dimension

Waveform 4 5 I7 10....

I Sine Wave 1.0F ij

FM Slide (Chirp) 2.0

Gaussian Noise 4.71 6.25 9.0
Lorenz Undistorted 2.02

Doppler-Shifted Lorenz Echo 3.33 3.5

Doppler-Shifted Lorenz 3.94

Duffing Undistorted 2.27 2.3

SDoppler-Shifted Duffing Echo 2.6 3.5

Doppler-Shifted Duffing 2.5I _ _ _ _ _ _ _. _._ _.__._

Henon Undistorted 1.22

Doppler-Shifted Henon Echo 3.75 4.35 5.0

Doppler-Shifted Henon 3.0

Iterative Undistorted 1.0
Doppler-Shifted Iterative Echo 4.75 7.33

i Doppler-Shifted Iterative 3.5

I The correlation dimension of an undistorted Duffing waveform embedded in four

dimensions is seen to have been estimated at about 2.27, implying a fractal dimension.

When embedded in 10 dimensional space the estimated correlation dimension is about 2.3.

These values demonstrate the invariance of the correlation dimension (i.e., the correlation

dimension does not change with embedding dimension once a sufficiently high dimension is
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used to embed the attractor). The estimated correlation dimension of a Doppler-shifted

Duffing echo (Case 1 ocean) embedded in 5 and 10 dimensions were found to be 2.6 and

3.5, respectively. Finding a linear portion of the curves shown in Appendix G, Figures G-12

and G-13, from which the correlation dimensions can be estimated is difficult, reducing the

confidence in the estimates. Nevertheless, the increase in correlation dimension with

embedding dimension suggests that the distortions caused by modulating, ocean propagation,

Doppler shifting, and demodulation introduce some 'noise.' However, the increase is far

below the embedding dimension. The correlation dimension estimate of a Doppler-shifted

signal without ocean propagation embedded in 10 dimensional space is only 2.5 compared

with 2.3 for the undistorted waveform. This suggests, at least in the case of Dutfing, that

Doppler does not significantly affect the correlation dimension.

A correlation dimension of 1.22 was estimated for the undistorted Henon waveform

using an embedding dimension of 5. The correlation dimension estimates increase to 3.75,

4.35, and 5 for the Doppler-shifted Henon echo when embedded in dimensions of 5, 7, and

10, respectively. Again, we see that the signal distortions have effectively added noise, worse

than in the case of the Duffing waveform, but still well below the embedding dimension.

The correlation dimension estimate of a Doppler-shifted signal without ocean propagation

when embedded in 10 dimensional space is 3. Again, we see a significantly reduced

correlation dimension relative to the propagated echo. However, the correlation dimension

of this Doppler-shifted signal is well above the undistorted signal.

The estimated correlation dimension of the undistorted Iterative waveform is 1, which

is surprisingly non-fractal. The dimensional estimates of the Doppler-shifted Iterative echo

are about 4.75 and 7.33 when embedded in dimensions of 5 and 10, respectively. These

estimates resemble noise much more than was observed with the Lorenz and Duffing

waveforms. When the signal is distorted by Doppler alone, the correlation dimension drops

significantly, to about 3.5.
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3.23.2 Local Intrinsic Dimension

Computation of the Local Intrinsic Dimension (LID) requires selection of an

embedding dimension, local vectors on the attractor, and the identification of the N nearest

neighbors of each local center. For this report 25 local vectors were selected. The 29

nearest neighbors (vectors) to each local vector were identified then averaged with the local

vector to find a local center. At each local center a matrix was formed of the difference

between each vector in a local neighborhood and its center. The LID was then found by

averaging the number of eigenvalues of each matrix within 10% of the value of the largest

eigenvalue of that matrix. This procedure yields an estimate of the topological dimension

of the data.

Table 3.2-2 gives the LIDs of the Lorenz, Duffing, Henon, and Iterative waveforms

using embedding dimensions of 10, 15 and 20. LIDs of the undistorted and distorted

waveforms are given. The distortions include propagation through the Case 1 ocean

environment with and without a Doppler shift. The Doppler shift is equivalent to 20 knots

target motion. Also included in the table is the LID of Gaussian noise. The LIDs of

Gaussian noise are seen to equal the embedding dimension. The distorted Henon and

Iterative waveforms give rise to noise like LIDs. The LIDs of the distorted Lorenz and

Duffing waveforms, however, are well below the embedding dimension suggesting that the

LID metric might be of value in identifying these two waveforms.
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Table 3.2-2.
Local Intrinsic Dimension (LID)

Embedding ension
Waveform 10S 1 20

Gaussian Noise 10 15 19.84

Lorenz 2.4 2.16 2.16

Propagated Lorenz 6.8 5.2 5.48

Propagated Doppler-Shifted Lorenz 7.04 5.88 6.56

Duffing 3.4 3.44 3.2

Propagated Duffing 4.52 4.8 5.2

Propagated Doppler-Shifted Duffing 4.72 5.4 5.92

Henon 3.24 5.88 9.8

Propagated Henon 10 14.76 17.92

Propagated Doppler-Shifted Henon 10 14.96 18.92

Iterative 4 11.8 18.36

Propagated Iterative 10 14.96 19.36

Propagated L 10 15 19.56

Notes: (1) 30 vectors in each local neighborhood, eigenvalues below 10% of

the highest rejected; (2) 25 local neighborhoods used in LID average; (3)

propagation is through Case 1 ocean, Doppler shift at 20 knots target motion.
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4. NOISE REDUCTION

A potentially valuable outgrowth of chaotic and non-';near signal processing research

has been the development of techniques to reduce noise from noisy signals (Cawley & Hsu,

1992; R. Hughes, private communication). A particularly simple, but effective, technique

has been developed under this contract. The common thread in all the techniques is to

extract a signal's attractor, embedded in N-dimensional space, from the noisy attractor. -,he

signal must be structured, i.e. of low dimensionality, but not necessarily cLaotic.

The technique developed under this contract is to simply average M nearest

neighbors of every point on the noisy signal's N-dimensional attractor. The resulting
'average attractor' is then 'disembedded' by averaging the appropriate components of the

vectors that constitute the average attractor. The parameters that must be specified are the

embedding delay, the embedding dimension, and the number of nearest neighbors. The

efficacy of this simple technique is illustrated in Figures 4-1 and 4-2. Time series of the

Lorenz wdveform (a), Gaussian noise (b), the sum of the Lorenz waveform and Gaussian

ise (c), and of the noise reduced estimate of the waveform (d) are illustrated in Figure

4-1. The SNR of the signal plus noise is 0 dB. The results shown in Figure 4-1d are from

threz iterations of the noise reduction technique starting with the time series shown in Figure

4-1c, using an embedding delay of 1 data sample, embedding dimension of 15, and 15

nearest neighbors in the averages. Figure 4-2 presents the power spectra corresponding to

the time series shown in Figure 4-1. Note that the spectrum of the noise reduced signal

resembles that of the signal, as contrasted to what one would expect from a low pass filter.

Had the signal been low pass filtered the spectrum would rapidly decrease beyond the cutoff

frequency.

A final example of the utility of the noise reduction algorithm is the enhancement of

the close return map illustrated in Figure 4-3. Panel (a) shows the close return map of the

undistorted Lorenz waveform. In panel (b) the waveform has been contaminated with
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I Gaussian noise at 0 dB SNR. Panel (c) illustrates the close return map of the noise reduced

signal. As before, an embedding dimension of 15 was used in the algorithm but, only 10

nearest neighbors. Three iterations of the algorithm were used to produce the results shown

in panel (c).
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I, CONCLUSIONS

U As broadband signals, chaotic waveforms have desirable characteristics such as range

resolution, range-rate resolution (Doppler), and reverberation discrimination against moving

targets. Second, unlike pseudo-random noise, chaotic waveforms are amenable to noise

reduction techniques that enhance the Signal-to-Noise Ratio (SNR) because they are of low

dimensionality. Additionally, because chaotic signals are difficult to recognize, they decrease

the potential for recognition by opposition forces.

Using a selection of qualitative and quantitative metrics, the Lorenz waveform is

identified as suitable for use in active surveillance scenarios. Further, it is demonstrated

that, given present projector technology constraints, waveform generation can be

accomplished using straightforward band-shifting techniques.
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I APPENDIX A

U NONLINEAR EQUATIONS

3 A.1 Quasiperiodically forced van der Pol equation:
- 2 X 2.(1 - + C02 =

where: )< 1

Ca<<1nwI<
Brindley et al. (1991)

I A.2 R~ssler equation:

I x= -Y -z

S• =x + ay

I3• = b + z(x - c)

3 where: a = 0.146

b = 0.2

I c= 10

Gouesbet & Maquet (1992)
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A.3 Nonlinear stochastic equation:

) = (a - 0.5) p - y + 2•" w

where: w = standard Gaussian white noise process

E p=1

Provenzale et al. (1992)

A.4 Fokker Equation

= 2x4 + 0.6y4 + exy(x -y)2

where: = 0.004

Millonas & Reichl (1992)
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I APPENDIX B

I PROPAGATION CHANNEL

I Figures B-1 through B-6 illustrate the impulse and frequency responses of the six

ocean environments utilized in this work. The frequency responses were provided by

I NUWC in New London, Connecticut and are for the transmitter-target and target-receiver

geometries given in Table 3.1-1 in the body of this report.
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APPENDIX C

REPLICA CORRELATIONS WITH NOISY SIGNALS

Figures C-1 through C-8 present cross correlations of the Lorenz, Duffing, Henon,

and Iterative waveforms with noisy copies of the same. For each waveform there are two

figures each containing four panels. The panels of the first figure of each set of two are

correlation with noisy signals with SNRs of 20, 10, 0, and -10. The SNRs of the second

figure of each set are -15, -20, -25, and -30. Note the scale change between the first figure

of each set (0 to 1) and the second figure (0 to 0.2).
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I APPENDIX D

REPLICA CORRELATIONS WITH DOPPLER-SHITrED ECHOES

Figures D-1 through D-6 present replica correlations of the Lorenz waveform with

its Doppler-shifted (20 knots relative target motion) echo. Figures D-1 through D-6

correspond to propagation through the six ocean environments whose impulse and frequency

responses are given in Appendix B. Each figure contains four panels, where the replica has

been Doppler-shifted by a different amount in each panel. The replicas have been shifted

by an amount corresponding to relative target motion of 19.5, 20, 20.2, and 20.4 knots in

panels (a) through (d), respectively.
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APPENDIX E

PHASE PLOTS OF DISTORTED SIGNALS

Figures E-1 through E-4 illustrate the effects upon phase plots of ocean nropagation

and Doppler-shifts to the Lorenz, Duffing, Henon, and Iterative waveforms, respectively.

The time delays used to generate the phase plots are as follows: three samples for the

Lorenz and Duffing; one sample for the Henon and Iterative waveforms. That is, the plots

are of pairs, [W(n),W(n+3)], for the Lorenz and Duffing, and [W(n),W(n+ 1)] for the Henon

and Iterative, where W(k) is the kth sample of the waveform W. Only in the Duffing, and

to a much lesser extent in the Lorenz, do the phase plots bear some semblance of the

original phase plot.I
Shown in each figure are two columns of four panels. Panel (a) is the phase plot of

the undistorted waveform. The waveform has been modulated then demodulated in panel

(b). Panel (c) is what would be seen at a stationary target were the signal demodulated,

while panel (d) is of the demodulated echo at the receiver. The right column of panels are

Doppler-shifted (20 knots relative motion) counterparts to the left column of panels. Panel

I (e) is the phase plot of the Doppler-shifted base band signal where as in panel (f) the

modulated signal has been Doppler-shifted. Panels (g) and (h) are phase plots of the

I Doppler-shifted signal demodulated at the target and at the receiver, respectively.
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I APPENDIX F

STEREOSCOPIC PROJECTIONS

Figures F-1 and F-2 present stereoscopic pairs of waveforms embedded in three
dimensions. The Lorenz and Duffing pairs are shown in Figure F-i, while the Henon and

Iterative are shown in Figure F-2. If the reader is able to perceive three dimensions from

these panels, then it will be seen that along the horizontal of the Lorenz, at an amplitude

of about zero, there is a deep trough. Another striking feature is seen in Figure F-2 from

the Iterative; the points appear to come sharply out of the paper starting at an amplitude

* of about -0.4.
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APPENDIX G

CORRELATION DIMENSION

Figures G-1 through G-23 present curves of the logarithm of C=(r) as a function of
the logarithm of r as defined in Section 2.5.1, page 11 in the body of this report. These

curves are used to extract the correlation dimension. The curves should be linear, or in

practice, partially linear. The correlation dimension is the slope of the linear portion of the

curves.
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